Efficient Diagnosis of Autism with Optimized Machine Learning Models: An Experimental Analysis on Genetic and Personal Characteristic Datasets

Author:

Alsuliman Maraheb1,Al-Baity Heyam H.2ORCID

Affiliation:

1. IT Department, College of Computing and Informatics, Saudi Electronic University, Riyadh 11673, Saudi Arabia

2. IT Department, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia

Abstract

Early diagnosis of autism is extremely beneficial for patients. Traditional diagnosis approaches have been unable to diagnose autism in a fast and accurate way; rather, there are multiple factors that can be related to identifying the autism disorder. The gene expression (GE) of individuals may be one of these factors, in addition to personal and behavioral characteristics (PBC). Machine learning (ML) based on PBC and GE data analytics emphasizes the need to develop accurate prediction models. The quality of prediction relies on the accuracy of the ML model. To improve the accuracy of prediction, optimized feature selection algorithms are applied to solve the high dimensionality problem of the datasets used. Comparing different optimized feature selection methods using bio-inspired algorithms over different types of data can allow for the most accurate model to be identified. Therefore, in this paper, we investigated enhancing the classification process of autism spectrum disorder using 16 proposed optimized ML models (GWO-NB, GWO-SVM, GWO-KNN, GWO-DT, FPA-NB, FPA-KNN, FPA-SVM, FPA-DT, BA-NB, BA-SVM, BA-KNN, BA-DT, ABC-NB, ABC-SVM, ABV-KNN, and ABC-DT). Four bio-inspired algorithms namely, Gray Wolf Optimization (GWO), Flower Pollination Algorithm (FPA), Bat Algorithms (BA), and Artificial Bee Colony (ABC), were employed for optimizing the wrapper feature selection method in order to select the most informative features and to increase the accuracy of the classification models. Five evaluation metrics were used to evaluate the performance of the proposed models: accuracy, F1 score, precision, recall, and area under the curve (AUC). The obtained results demonstrated that the proposed models achieved a good performance as expected, with accuracies of 99.66% and 99.34% obtained by the GWO-SVM model on the PBC and GE datasets, respectively.

Publisher

MDPI AG

Reference40 articles.

1. Premature mortality in autism spectrum disorder;Hirvikoski;Br. J. Psychiatry,2016

2. Feature selection for high-dimensional data;Prog. Artif. Intell.,2016

3. A machine learning based approach to classify autism with optimum behavior sets;Vaishali;Int. J. Eng. Technol.,2018

4. A New Optimized Wrapper Gene Selection Method for Breast Cancer Prediction;Comput. Mater. Contin.,2021

5. Autism Spectrum Disorder Detection with Machine Learning Methods;Erkan;Curr. Psychiatry Rev.,2019

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3