Canopy Volume Extraction of Citrus reticulate Blanco cv. Shatangju Trees Using UAV Image-Based Point Cloud Deep Learning

Author:

Qi Yuan,Dong Xuhua,Chen PengchaoORCID,Lee Kyeong-Hwan,Lan Yubin,Lu Xiaoyang,Jia Ruichang,Deng Jizhong,Zhang YaliORCID

Abstract

Automatic acquisition of the canopy volume parameters of the Citrus reticulate Blanco cv. Shatangju tree is of great significance to precision management of the orchard. This research combined the point cloud deep learning algorithm with the volume calculation algorithm to segment the canopy of the Citrus reticulate Blanco cv. Shatangju trees. The 3D (Three-Dimensional) point cloud model of a Citrus reticulate Blanco cv. Shatangju orchard was generated using UAV tilt photogrammetry images. The segmentation effects of three deep learning models, PointNet++, MinkowskiNet and FPConv, on Shatangju trees and the ground were compared. The following three volume algorithms: convex hull by slices, voxel-based method and 3D convex hull were applied to calculate the volume of Shatangju trees. Model accuracy was evaluated using the coefficient of determination (R2) and Root Mean Square Error (RMSE). The results show that the overall accuracy of the MinkowskiNet model (94.57%) is higher than the other two models, which indicates the best segmentation effect. The 3D convex hull algorithm received the highest R2 (0.8215) and the lowest RMSE (0.3186 m3) for the canopy volume calculation, which best reflects the real volume of Citrus reticulate Blanco cv. Shatangju trees. The proposed method is capable of rapid and automatic acquisition for the canopy volume of Citrus reticulate Blanco cv. Shatangju trees.

Funder

Guangdong Modern Agricultural Industry Generic Key Technology Research and Development Innovation Team Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference56 articles.

1. Review of the pesticide precision orchard spraying technologies;Wang;Trans. Chin. Soc. Agric. Eng.,2004

2. Research situation and progress analysis on orchard variable rate spraying technology;Zhou;Trans. Chin. Soc. Agric. Eng.,2017

3. A History of Air-Blast Sprayer Development and Future Prospects

4. An estimation of tree canopy biomass based on 3D laser scanning imag-ing system;Feng;J. Beijing For. Univ.,2007

5. Tree crown volume calculation based on 3-D laser scanning point clouds data;Wei;Trans. Chin. Soc. Agric. Mach.,2013

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3