High-Precision Mango Orchard Mapping Using a Deep Learning Pipeline Leveraging Object Detection and Segmentation

Author:

Afsar Muhammad Munir1ORCID,Bakhshi Asim Dilawar2ORCID,Iqbal Muhammad Shahid3ORCID,Hussain Ejaz1ORCID,Iqbal Javed1

Affiliation:

1. Institute of Geographical Information Systems, National University of Sciences and Technology, Islamabad 44000, Pakistan

2. Department of Electrical Engineering, Military College of Signals, National University of Science and Technology, Rawalpindi 46000, Pakistan

3. Institute of Geo-Information and Earth Observation, ARID Agriculture University, Rawalpindi 46000, Pakistan

Abstract

Precision agriculture-based orchard management relies heavily on the accurate delineation of tree canopies, especially for high-value crops like mangoes. Traditional GIS and remote sensing methods, such as Object-Based Imagery Analysis (OBIA), often face challenges due to overlapping canopies, complex tree structures, and varied light conditions. This study aims to enhance the accuracy of mango orchard mapping by developing a novel deep-learning approach that combines fine-tuned object detection and segmentation techniques. UAV imagery was collected over a 65-acre mango orchard in Multan, Pakistan, and processed into an RGB orthomosaic with a 3 cm ground sampling distance. The You Only Look Once (YOLOv7) framework was trained on an annotated dataset to detect individual mango trees. The resultant bounding boxes were used as prompts for the segment anything model (SAM) for precise delineation of canopy boundaries. Validation against ground truth data of 175 manually digitized trees showed a strong correlation (R2 = 0.97), indicating high accuracy and minimal bias. The proposed method achieved a mean absolute percentage error (MAPE) of 4.94% and root mean square error (RMSE) of 80.23 sq ft against manually digitized tree canopies with an average size of 1290.14 sq ft. The proposed approach effectively addresses common issues such as inaccurate bounding boxes and over- or under-segmentation of tree canopies. The enhanced accuracy can substantially assist in various downstream tasks such as tree location mapping, canopy volume estimation, health monitoring, and crop yield estimation.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3