Effects of Microalgae as Biostimulants on Plant Growth, Content of Antioxidant Molecules and Total Antioxidant Capacity in Chenopodium quinoa Exposed to Salt Stress

Author:

Fiorentino Sofia1,Bellani Lorenza12ORCID,Santin Marco3ORCID,Castagna Antonella3ORCID,Echeverria Maria Cristina4ORCID,Giorgetti Lucia1ORCID

Affiliation:

1. Institute of Biology and Agricultural Biotechnology (IBBA), National Research Council, Pisa Unit, 56124 Pisa, Italy

2. Department of Life Sciences, University of Siena, 53100 Siena, Italy

3. Department of Agriculture, Food and Environment (DAFE), University of Pisa, 56124 Pisa, Italy

4. eCIER Research Group, Department of Biotechnology, Universidad Técnica del Norte, Av. 17 de Julio 5–21 y Gral. José María Córdova, Ibarra 100150, Ecuador

Abstract

Chenopodium quinoa Willd. is a halophytic plant valued for its nutritional and nutraceutical properties, as well as its adaptability to diverse soil and climatic conditions. Biostimulant application enhances plant quality and resilience under adverse environmental conditions. The effects of microalgae extracts (Ettlia pseudoalveolaris and Chlorella vulgaris) and salt stress (NaCl 100, 200, 300 mM) were evaluated on 7-day-old seedlings of two quinoa varieties, ‘Tunkahuan’ and ‘Regalona’. The analysis focused on the content of antioxidant molecules (total phenolics and flavonoids), total antioxidant capacity (measured by DPPH, 2,2-Diphenyl-1-picrylhydrazyl, and FRAP, Ferric Reducing Antioxidant Power, assays), reactive oxygen species (ROS), the levels of lutein, β-carotene, chlorophyll a and b. Microalgae extracts and salt stress treatments significantly increased antioxidant molecules in both quinoa varieties. The highest antioxidant activity, measured by the DPPH assay, was observed in ‘Regalona’, while a dose-dependent increase in antioxidant capacity, by the FRAP assay, was evident in ‘Tunkahuan’ treated with Ettlia. ROS level was reduced by Ettlia in ‘Tunkahuan’ but not in ‘Regalona’. Pigment content increased with higher salt concentrations but decreased with the addition of biostimulants. These findings suggest that the application of microalgae extracts enhances bioactive compounds, improving salinity resistance and increasing the nutraceutical value of quinoa sprouts.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3