Effects of Quinoa Secondary Metabolites on In Vitro Fermentation and Gas Production

Author:

Ge Junfeng12,Yang Yindi12,Lu Hao12,Wang Bo1,Yang Hongjin12,Guo Shanli123

Affiliation:

1. College of Grassland Sciences, Qingdao Agricultural University, Qingdao 266109, China

2. Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China

3. College of Life Sciences, Yantai University, Yantai 264005, China

Abstract

Livestock methane emissions are a significant source of greenhouse gases. The aim of this study was to investigate the secondary metabolites of different strains of silage quinoa and their impact on methane emissions from livestock farming. In this study, we evaluated the chemical composition, fermentation quality, secondary metabolite content, and in vitro gas production of eight quinoa lines, 093, 137, 231, 238, 565, 666, 770, and 811, grown in saline and alkaline areas of the Yellow River Delta. The results showed that crude protein, EE, and crude ash content ranged from 8.84% to 10.69%, 1.98% to 2.38%, and 17.00% to 23.14%, respectively. The acidic and neutral detergent fiber content of these eight quinoa varieties ranged from 49.31% to 61.91% and 33.29% to 37.31%, respectively. Line 093 had the highest total saponin content, while Line 231 exhibited the highest flavonoid content. Methane yield was significantly and negatively correlated with tannin, saponin, and flavonoid content, whereas carbon dioxide yield showed a positive correlation with saponin and flavonoid content. Among all lines, 770 and 811 demonstrated the lowest methane production, indicating strong in vitro inhibition of methanogenesis. These findings suggest that feeding quinoa silage to ruminants has the potential to reduce greenhouse gas emissions.

Funder

Shandong Provincial Key R&D Plans Project—Agricultural Seed Improvement: Cultivation of new varieties of quinoa with high efficiency and high-quality tolerance to salt and alkali

Shandong Provincial Key R&D Plans Project (Major Scientific and Technological Innovation Project): The main grass-animal molecular breeding and new variety breeding

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.7亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2025 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3