Abstract
Splitting a droplet into several segments is of great significance in many applications such as the detection of tiny liquid samples, whereas the surface tension tends to hold liquid to remain as one drop, causing difficulty in separating the droplet into pieces. In this work, a method is proposed to split an impacting droplet with a relatively high velocity or Weber number into two halves by a superhydrophobic wire. The effects of the wire wettability and the impact velocity of the droplet on the splitting phenomena and the efficacy to an anti-icing application are investigated. Compared to a hydrophilic wire, a superhydrophobic wire splits an impacting droplet at a relatively high speed of the Weber number greater than 3.1 and inhibits ice accretion at the temperature as low as −20 °C. The results suggest that a superhydrophobic wire can be utilized in the droplet manipulation and anti-icing applications such as power lines in high latitude areas.
Funder
National Science Foundation of China
Fundamental Research Funds for the Central Universities
National Science Foundation
Subject
Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献