Experimental Investigation on the Droplet Stability of Superhydrophobic Mesh

Author:

Song Dong1,Liu Xin1,Wang Xiang1,Du Xiaoxu1,Hu Haibao1

Affiliation:

1. School of Marine Science and Technology, Northwestern Polytechnical University, 127 Youyi Xilu, Xi’an 710072, China

Abstract

Superhydrophobic surfaces could repel water due to the capillary force associated with surface roughness, which has a large range of applications, such as underwater drag reduction, heat transfer enhancement, oil/water separation, and so on. However, the engineering applications of superhydrophobic surfaces rely on the stability of the superhydrophobic surfaces. In this study, a hydrophilic metal mesh was modified to be superhydrophobic. The resulting superhydrophobic mesh was designed as a bowl capable of holding water without leaking and as a boat floating on top of water without sinking. The stability of an impacting droplet on a superhydrophobic mesh was investigated using both experiments and theoretical analysis. It was demonstrated that the capillary force is able to prevent water from passing through the mesh and maintain the stability of the air–water interface under dynamic pressure. Furthermore, a theoretical model was developed to diagnose the stability of the air–water interface on the superhydrophobic mesh when in contact with water, and the results are consistent with the experimental findings. The results of this work can be utilized to design robust superhydrophobic meshes and advance the field of droplet manipulation.

Funder

National Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Materials Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3