Optimization of Laser Cladding Parameters for High-Entropy Alloy-Reinforced 316L Stainless-Steel via Grey Relational Analysis

Author:

Gao Senao1,Fu Qiang2,Li Mengzhao1,Huang Long1,Liu Nian3,Cui Chang1,Yang Bing1,Zhang Guodong1ORCID

Affiliation:

1. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

2. School of Physics and Technology, Wuhan University, Wuhan 430072, China

3. College of Engineering, Huazhong Agricultural University, Wuhan 430070, China

Abstract

Laser cladding technology serves as a pivotal technique in industrial production, especially in the realms of additive manufacturing, surface enhancement, coating preparation, and the repair of part surfaces. This study investigates the influence of metal powder composition and processing parameters on laser cladding coatings utilizing the Taguchi orthogonal experimental design method. To optimize the laser cladding parameters, multi-response grey relational analysis (GRA) was employed, aiming to improve both the microhardness and the overall quality of the coatings. The optimal parameter combinations identified through GRA were subsequently validated through experimental tests. The results reveal that the microhardness and quality of the coatings are substantially influenced by several critical factors, including the powder feed rate, laser power, high-entropy alloy (HEA) addition rate, scanning speed, and substrate tilt angle. Specifically, the powder feed rate exerts the most significant effect on the microhardness, dilution rate, and average contact angle. In contrast, laser power primarily impacts the mean contact angle difference. The HEA addition rate notably affects the mean contact angle difference, while the scanning speed affects the microhardness and the substrate tilt angle influences the average contact angle. The results of the validation experiment showed a deviation of only 0.95% from the predicted values, underscoring the efficacy of the grey relational analysis (GRA) in optimizing the laser cladding process parameters. The methodology presented in this paper can be applied to determine the ideal processing parameters for multi-response laser cladding processes, encompassing applications such as surface peening and surface repair.

Funder

the National Natural Science Foundation of China

the Shenzhen Science and Technology Program

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3