Experimental and Analytical Investigation of the Re-Melting Effect in the Manufacturing of 316L by Direct Energy Deposition (DED) Method

Author:

Kahya Harun12ORCID,Gurun Hakan2ORCID,Kucukturk Gokhan3ORCID

Affiliation:

1. Department of Manufacturing Engineering, Defense Industries Research and Development Institute, The Scientific and Technological Research Council of Turkey, Ankara 06261, Turkey

2. Department of Manufacturing Engineering, Gazi University, Ankara 06500, Turkey

3. Department of Mechanical Engineering, Gazi University, Ankara 06500, Turkey

Abstract

In this study, the effects of the laser power (2000 W, 2250 W, 2500 W), scanning speed (0.6, 0.8, 1 m/min), and powder feed rate (10, 12.5, 15 g/min) on material structures and their mechanical properties were investigated in the production of 316L stainless steels through Direct Energy Deposition (DED). In addition, changes in the microstructure caused by the re-melting process were also investigated. Optimized process parameters were modeled using the CFD software (FLOW 3D V3.0). In order to see the effects on the density and mechanical properties, the sample production was repeated as a build and by applying the re-melting process between the layers. When the energy density and powder feed rate are considered together, it has been determined that the deposition rate increases in direct proportion to the energy density and tends to decrease inversely with the powder feed rate. When the experimental and analysis results of the single clad height are compared, it is seen that the values obtained are very approximate. It has been observed that the most important parameters affecting the formation of porosity are the energy density and powder feed density. Re-melting slightly affects the microstructure of the material and causes grain growth. Changes in the impact strength of the re-melted samples were observed depending on the energy density.

Funder

TUBITAK Defense Industries Research and Development Institute

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3