Evaluation of Filter, Paramagnetic, and STAGETips Aided Workflows for Proteome Profiling of Symbiodiniaceae Dinoflagellate

Author:

Supasri Kanoknate M.,Kumar Manoj,Mathew Mano J.,Signal Bethany,Padula Matthew P.ORCID,Suggett David J.,Ralph Peter J.

Abstract

The integrity of coral reef ecosystems worldwide rests on a fine-tuned symbiotic interaction between an invertebrate and a dinoflagellate microalga from the family Symbiodiniaceae. Recent advances in bottom-up shotgun proteomic approaches and the availability of vast amounts of genetic information about Symbiodiniaceae have provided a unique opportunity to better understand the molecular mechanisms underpinning the interactions of coral-Symbiodiniaceae. However, the resilience of this dinoflagellate cell wall, as well as the presence of polyanionic and phenolics cell wall components, requires the optimization of sample preparation techniques for successful implementation of bottom-up proteomics. Therefore, in this study we compare three different workflows—filter-aided sample preparation (FASP), single-pot solid-phase-enhanced sample preparation (SP3), and stop-and-go-extraction tips (STAGETips, ST)—to develop a high-throughput proteotyping protocol for Symbiodiniaceae algal research. We used the model isolate Symbiodinium tridacnidorum. We show that SP3 outperformed ST and FASP with regard to robustness, digestion efficiency, and contaminant removal, which led to the highest number of total (3799) and unique proteins detected from 23,593 peptides. Most of these proteins were detected with ≥2 unique peptides (73%), zero missed tryptic peptide cleavages (91%), and hydrophilic peptides (>70%). To demonstrate the functionality of this optimized SP3 sample preparation workflow, we examined the proteome of S. tridacnidorum to better understand the molecular mechanism of peridinin-chlorophyll-protein complex (PCP, light harvesting protein) accumulation under low light (LL, 30 μmol photon m−2 s−1). Cells exposed to LL for 7 days upregulated various light harvesting complex (LHCs) proteins through the mevalonate-independent pathway; proteins of this pathway were at 2- to 6-fold higher levels than the control of 120 μmol photon m−2 s−1. Potentially, LHCs which were maintained in an active phosphorylated state by serine/threonine-protein kinase were also upregulated to 10-fold over control. Collectively, our results show that the SP3 method is an efficient high-throughput proteotyping tool for Symbiodiniaceae algal research.

Funder

Australian Research Council

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3