Spatiotemporal Patterns and Key Driving Factors of Soil Salinity in Dry and Wet Years in an Arid Agricultural Area with Shallow Groundwater Table

Author:

Sun Guanfang,Zhu Yan,Gao Zhaoliang,Yang Jinzhong,Qu Zhongyi,Mao WeiORCID,Wu Jingwei

Abstract

Soil salinization is a major eco-environmental problem in irrigated agro-ecosystems. Understanding regional soil salinity spatial patterns and seasonal dynamics and their driving factors under changing environments is beneficial to managing soil salinity to maintain agricultural production in arid agricultural areas. To better investigate this topic, soil salinity was measured, ranging from topsoil to the depth of 1.8 m in an irrigation district with 68 sampling sites before and after the crop growing seasons of the dry year of 2017 and wet year of 2018. Soil texture, groundwater table depth, groundwater salinity, and crop type were monitored. The results indicated that an increase in soil salinity in the root zone (0–0.6 m) was accompanied by a decrease in soil salinity in the deep soil (0.6–1.8 m) through the crop growing season due to water movement from the deep layer to shallow layer, whereas the opposite trend was observed during the fallow seasons. During the dry year, the area with soil desalted was measured to be 19.89%, 14.42%, and 2.78% lower at depths of 0–0.6 m, 0.6–1.2 m, and 1.2–1.8 m than that during the wet year. The groundwater table depth in the crop growing season had the least impact on the change in root zone soil salinity (p > 0.05). Interactions between crop types and groundwater table depth had a significant effect on the change of soil salinity in the root zone during the growing season of the dry year, but were insignificant during the wet year. Crop types, groundwater table depth, and climate conditions determined the contribution of shallow groundwater to crop water consumption and, to a greater extent, soil salinity. Regression tree analysis showed that groundwater salinity and soil texture had a greater influence on soil salinity than groundwater table depth and land elevation. The effect of groundwater on soil salinity is strongly related to soil texture, and the salinity of fine-textured soil was 36–54% greater than that of coarse-textured soil due to large capillary action. Therefore, we suggest strengthening groundwater management in areas with fine-textured soil to relieve soil salinization, particularly during dry years.

Funder

Chinese Universities Scientific Fund

Natural Science Foundation of China through Grants

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3