Fertigation and Carboxymethyl Cellulose Applications Enhance Water-Use Efficiency, Improving Soil Available Nutrients and Maize Yield in Salt-Affected Soil

Author:

Wang Yaqi1,Gao Ming1,Chen Heting1,Chen Yiwen1,Wang Lei2,Wang Rui1

Affiliation:

1. School of Agriculture, Ningxia University, Yinchuan 750021, China

2. School of Ecology and Environment, Ningxia University, Yinchuan 750021, China

Abstract

Conventional organic soil amendments and drip irrigation are insufficient for mitigating soil salinization. The development of a more potent soil amendment with higher water retention capability is critical. Carboxymethyl cellulose (CMC) has excellent water retention and adsorption properties and is suitable for soil water retention and amendment; however, its effects on water and salt distribution, soil nutrients, and maize yield have not been clearly investigated. We set up five treatments with flood irrigation (CK), drip irrigation (W), drip irrigation combined with 100 kg CMC ha−1 (WC1), drip irrigation combined with 200 kg CMC ha−1 (WC2), and drip irrigation combined with 300 kg CMC ha−1 (WC3). Our findings demonstrate that the application of CMC in conjunction with drip irrigation led to a significant surge in soil water content within the 0–40 cm layer, ranging from 3.73% to 16.46%, while simultaneously inducing a reduction in salt content of 4.08% to 16.61%. Consequently, this resulted in a desalination rate spanning from 10.32% to 12.93%. The salt was gradually washed down and formed a desalination area with the drip emitter as the center, and the salt distribution characteristics shifted from a surface accumulation type to a bottom deposition type. The drip irrigation and CMC application also increased the content of available nutrients, reduced surface evaporation, underground water loss, and maize evapotranspiration, and improved water-use efficiency, thus increasing the aboveground biomass and grain yield. In summary, CMC had a significant effect on water retention, desalination, and yield increases. It can serve as a novel soil amendment for salt-affected soil.

Funder

National key research and development program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3