Controlling Upper Limb Prostheses Using Sonomyography (SMG): A Review

Author:

Nazari Vaheh1,Zheng Yong-Ping12ORCID

Affiliation:

1. Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China

2. Research Institute for Smart Ageing, The Hong Kong Polytechnic University, Hong Kong SAR, China

Abstract

This paper presents a critical review and comparison of the results of recently published studies in the fields of human–machine interface and the use of sonomyography (SMG) for the control of upper limb prothesis. For this review paper, a combination of the keywords “Human Machine Interface”, “Sonomyography”, “Ultrasound”, “Upper Limb Prosthesis”, “Artificial Intelligence”, and “Non-Invasive Sensors” was used to search for articles on Google Scholar and PubMed. Sixty-one articles were found, of which fifty-nine were used in this review. For a comparison of the different ultrasound modes, feature extraction methods, and machine learning algorithms, 16 articles were used. Various modes of ultrasound devices for prosthetic control, various machine learning algorithms for classifying different hand gestures, and various feature extraction methods for increasing the accuracy of artificial intelligence used in their controlling systems are reviewed in this article. The results of the review article show that ultrasound sensing has the potential to be used as a viable human–machine interface in order to control bionic hands with multiple degrees of freedom. Moreover, different hand gestures can be classified by different machine learning algorithms trained with extracted features from collected data with an accuracy of around 95%.

Funder

Telefield Charitable Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3