Compact Design of A Lightweight Rehabilitative Exoskeleton for Restoring Grasping Function in Patients with Hand Paralysis

Author:

Nazari Vaheh1,Pouladian Majid2,Zheng Yong-Ping1,Alam Monzurul3ORCID

Affiliation:

1. The Hong Kong Polytechnic University

2. Islamic Azad University

3. Hong Kong Polytechnic University

Abstract

Abstract BackgroundMillions of individuals suffer from upper extremity paralysis caused by neurological disorders including stroke, traumatic brain injury, spinal cord injury, or other medical conditions. In order to restore motor control and enhance the quality of life of these patients, daily exercises and strengthening training are necessary. Robotic hand exoskeletons can substitute for the missing motor control and help to restore the functions performed in daily operations. They can also facilitate neuroplasticity to help rehabilitate hand function through routine use. However, most of the hand exoskeletons are bulky, stationary, and cumbersome to use.Methods We have utilized a recent design of a hand exoskeleton (Tenoexo) and modified the design to prototype a motorized, lightweight, fully wearable rehabilitative hand exoskeleton by combining rigid parts with a soft mechanism capable of producing various grasps needed for the execution of daily tasks. We have tested the performance of our developed hand exoskeleton in restoring hand functions in two quadriplegics with chronic cervical cord injury.ResultsMechanical evaluation of our exoskeleton showed that it can produce fingertip force up to 8 N and can cover 91.5 degree of range of motion in just 3 seconds. We further tested the robot in two quadriplegics with chronic hand paralysis, and observed immediate success on independent grasping of different daily objects. ConclusionsThe results suggest that our exoskeleton is a viable option for hand function assistance, allowing patients to regain lost finger control for everyday activities.

Publisher

Research Square Platform LLC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3