miR-3174 Is a New Tumor Suppressor MicroRNA That Inhibits Several Tumor-Promoting Genes in Glioblastoma

Author:

Hanif Farina12ORCID,Zhang Ying1,Dube Collin1,Gibert Myron K.1,Saha Shekhar1ORCID,Hudson Kadie1,Marcinkiewicz Pawel1,Kefas Benjamin1,Guessous Fadila1,Abounader Roger134

Affiliation:

1. Department of Microbiology, Immunology, and Cancer Biology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA

2. Department of Biochemistry, Dow International Medical College, Dow University of Health Sciences, OJHA Campus, SUPARCO Road, Karachi 74200, Pakistan

3. University of Virginia Comprehensive Cancer Center, Charlottesville, VA 22908, USA

4. Department of Neurology, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA

Abstract

microRNAs (miRNAs) play an important role in the pathology of glioblastoma (GBM), which is the most malignant and most common primary malignant brain tumor. miRNAs can target multiple genes simultaneously and are considered as potential therapeutic agents or targets. This study aimed to determine the role of miR-3174 in the pathobiology of GBM using both in vitro and in vivo approaches. This is the first study deciphering the role of miR-3174 in GBM. We studied the expression of miR-3174 and found it to be downregulated in a panel of GBM cell lines, GSCs and tissues relative to astrocytes and normal brain tissue. This finding led us to hypothesize that miR-3174 has a tumor-suppressive role in GBM. Exogenous expression of miR-3174 inhibited GBM cell growth and invasion, and hampered the neurosphere formation ability of GSCs. miR-3174 downregulated the expression of multiple tumor-promoting genes including CD44, MDM2, RHOA, PLAU and CDK6. Further, overexpression of miR-3174 reduced tumor volume in nude mice with intracranial xenografts. Immuno-histochemical study of brain sections with intracranial tumor xenografts revealed the pro-apoptotic and anti-proliferative activity of miR-3174. In conclusion, we demonstrated that miR-3174 has a tumor-suppressive role in GBM and could be exploited for therapeutic purposes.

Funder

NIH

NCI Cancer Center

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3