A Fault-tolerant Steering Prototype for X-rudder Underwater Vehicles

Author:

Wang WenjinORCID,Chen Ying,Xia Yingkai,Xu Guohua,Zhang Wei,Wu Hongming

Abstract

The X-rudder concept has been applied to more and more autonomous underwater vehicles (AUVs) in recent years, since it shows better maneuverability and robustness against rudder failure compared to the traditional cruciform rudder. Aiming at the fault-tolerant control of the X-rudder AUV (hereinafter abbreviated as xAUV), a fault-tolerant steering prototype system which can realize dynamics control, autonomous rudder fault detection and fault-tolerant control is presented in this paper. The steering prototype system is deployed on a verification platform, an xAUV, in which the monitor software is developed based on the factory method and the onboard software is developed based on the finite state machine (FSM). Dual-loop increment feedback control (DIFC) is first introduced to obtain smooth virtual rudder commands considering actuator’s limitations. Then the virtual rudder commands are transformed into X-rudder commands based on the mapping theory. In rudder fault diagnosis, an optimized particle filter is proposed for estimating rudder effect deduction, with proposal distribution derived from unscented Kalman filter (UKF). Then the fault type can be determined by analyzing indicators related to the deduction. Fault-tolerant control is addressed by dealing with nonlinear programming (NLP) problem, where minimization of allocation errors and control efforts are set as the optimization objectives, and rudder failure, saturation and actuators limitations are considered as constraints. The fixed-point iteration method is utilized to solve this optimization problem. Many field tests have been conducted in towing tank. The experimental results demonstrate that the proposed steering prototype system is able to detect rudder faults and is robust against rudder failure.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3