Antihyperglycemic, Antiaging, and L. brevis Growth-Promoting Activities of an Exopolysaccharide from Agrobacterium sp. FN01 (Galacan) Evaluated in a Zebrafish (Danio rerio) Model

Author:

Xu Xiaoqing1ORCID,Du Lingling2,Wang Meng2,Zhang Ran2,Shan Junjie3,Qiao Yu1,Peng Qing1,Shi Bo1

Affiliation:

1. Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing 100081, China

2. Chengdu Sydix Biotech Co., Ltd., Building 1A, Chengdu Hi-Tech Incubation Park, No. 1480 Tianfu Avenue North, Hi-Tech Zone, Chengdu 610095, China

3. Academy of Military Medical Sciences Institute of Pharmacology and Toxicology, Beijing 100039, China

Abstract

Agrobacterium sp. are notable for their ability to produce substantial amounts of exopolysaccharides. Our study identified an exopolysaccharide (Galacan, 4982.327 kDa) from Agrobacterium sp. FN01. Galacan is a heteropolysaccharide primarily composed of glucose and galactose at a molar ratio of 25:1. The FT-IR results suggested that Galacan had typical absorption peaks of polysaccharide. The results of periodate oxidation, Smith degradation, and NMR confirmed the presence of structural units, such as β-D-Galp(→, →3)β-D-Galp(1→, →2,3)β-D-Glcp(1→, β-D-Glcp(1→, and →2)β-D-Glcp(1→. Galacan demonstrated significant biological activities. In experiments conducted with zebrafish, it facilitated the proliferation of Lactobacillus brevis in the intestinal tract, suggesting potential prebiotic properties. Moreover, in vivo studies revealed its antihyperglycemic effects, as evidenced by significant reductions in blood glucose levels and enhanced fluorescence intensity of pancreatic β cells in a streptozotocin (STZ)-induced hyperglycemic zebrafish model. Additionally, antiaging assays demonstrated Galacan’s ability to inhibit β-galactosidase activity and enhance telomerase activity in a hydrogen peroxide (HP)-induced aging zebrafish model. These findings emphasized the potential of Galacan as a natural prebiotic with promising applications in diabetes prevention and antiaging interventions.

Funder

Central Research Institute’s Basic Research Fund of China for the Chinese Academy of Agricultural Sciences Feed Research Institute

Beijing Natural Science Foundation

Agricultural Science and Technology Innovation Program (ASTIP) of the Chinese Academy of Agricultural Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3