No Effect of EVA and TPU Custom Foot Orthoses on Mechanical Asymmetries during Acute Intense Fatigue

Author:

Van Alsenoy Ken12,Ryu Joong3,Girard Olivier14ORCID

Affiliation:

1. Aspetar Orthopaedic and Sports Medicine Hospital, Doha 23833, Qatar

2. Centre for Health, Activity and Rehabilitation Research (CHEAR), Queen Margaret University, Edinburgh EH21 6UU, UK

3. Sports Science Department, Aspire Academy, Doha 23153, Qatar

4. Exercise and Sport Science Department, School of Human Sciences, The University of Western Australia, Perth, WA 6009, Australia

Abstract

This study examined the impact of custom foot orthoses made of ethyl-vinyl acetate (EVA) and expanded thermoplastic polyurethane (TPU) materials, both compared to a control condition (CON; shoes only), on mechanical asymmetries during repeated treadmill sprints. Eighteen well-trained male runners executed eight, 5-s sprints (rest: 25 s) on an instrumented motorized treadmill in three footwear conditions (EVA, TPU, and CON). We evaluated the group mean asymmetry scores using the ‘symmetry angle’ (SA) formula, which assigns a score of 0% for perfect symmetry and a score of 100% for perfect asymmetry. There was no condition (all p ≥ 0.053) or time (p ≥ 0.074) main effects, nor were there any significant time × condition interactions on SA scores for any variables (p ≥ 0.640). Mean vertical, horizontal, and total forces presented mean SA values (pooled values for the three conditions) of 2.6 ± 1.9%, 2.9 ± 1.6%, and 2.4 ± 1.8%, respectively. Mean SA scores were ~1–3% for contact time (1.5 ± 0.5%), flight time (3.0 ± 0.3%), step frequency (1.1 ± 0.5%), step length (1.9 ± 0.7%), vertical stiffness (2.1 ± 0.9%), and leg stiffness (2.4 ± 1.1%). Mean SA scores were ~2–6.5% for duration of braking (4.1 ± 1.6%) and propulsive (2.4 ± 1.0%) phases, and peak braking (6.2 ± 2.9%) and propulsive (2.1 ± 1.4%) forces. In well-trained runners facing intense fatigue, wearing custom foot orthoses did not modify the observed low-to-moderate natural stride mechanical asymmetries.

Funder

QNRF

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3