Numerical Simulation of the Effect of Different Footwear Midsole Structures on Plantar Pressure Distribution and Bone Stress in Obese and Healthy Children

Author:

Zhou Qixuan1,Niu Wenxin2ORCID,Yick Kit-Lun3,Gu Bingfei145ORCID,Sun Yue145ORCID

Affiliation:

1. School of Fashion Design & Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

2. Shanghai Yang Zhi Rehabilitation Hospital, Tongji University School of Medicine, Shanghai 200125, China

3. School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong

4. Clothing Engineering Research Center of Zhejiang Province, Hangzhou 310018, China

5. Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Hangzhou 310018, China

Abstract

The foot, as the foundation of the human body, bears the vast majority of the body’s weight. Obese children bear more weight than healthy children in the process of walking and running. This study compared three footwear midsole structures (solid, lattice, and chiral) based on plantar pressure distribution and bone stress in obese and healthy children through numerical simulation. The preparation for the study included obtaining a thin-slice CT scan of a healthy 9-year-old boy’s right foot, and this study distinguished between a healthy and an obese child by applying external loadings of 25 kg and 50 kg in the finite element models. The simulation results showed that the plantar pressure was mainly concentrated in the forefoot and heel due to the distribution of gravity (first metatarsal, fourth metatarsal, and heel bone, corresponding to plantar regions M1, M4, and HM and HL) on the foot in normal standing. Compared with the lattice and solid EVA structures, in both healthy and obese children, the percentage reduction in plantar pressure due to the chiral structure in the areas M1, M4, HM, and HL was the largest with values of 38.69%, 34.25%, 64.24%, and 54.03% for an obese child and 33.99%, 28.25%, 56.08%, and 56.96% for a healthy child. On the other hand, higher pressures (15.19 kPa for an obese child and 5.42 kPa for a healthy child) were observed in the MF area when using the chiral structure than when using the other two structures, which means that this structure can transfer an amount of pressure from the heel to the arch, resulting in a release in the pressure at the heel region and providing support at the arch. In addition, the study found that the chiral structure was not highly sensitive to the external application of body weight. This indicates that the chiral structure is more stable than the other two structures and is minimally affected by changes in external conditions. The findings in this research lay the groundwork for clinical prevention and intervention in foot disorders in obese children and provide new research ideas for shoe midsole manufacturers.

Funder

Hangzhou Health Science and Technology project

Zhejiang Sci-tech University

Publisher

MDPI AG

Subject

Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3