Author:
Nguyen Nguyet,Nguyen Dung
Abstract
Hidden Markov model (HMM) is a powerful machine-learning method for data regime detection, especially time series data. In this paper, we establish a multi-step procedure for using HMM to select stocks from the global stock market. First, the five important factors of a stock are identified and scored based on its historical performances. Second, HMM is used to predict the regimes of six global economic indicators and find the time periods in the past during which these indicators have a combination of regimes that is similar to those predicted. Then, we analyze the five stock factors of the All country world index (ACWI) in the identified time periods to assign a weighted score for each stock factor and to calculate the composite score of the five factors. Finally, we make a monthly selection of 10% of the global stocks that have the highest composite scores. This strategy is shown to outperform those relying on either ACWI, any single stock factor, or the simple average of the five stock factors.
Subject
Strategy and Management,Economics, Econometrics and Finance (miscellaneous),Accounting
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献