A graph-based big data optimization approach using hidden Markov model and constraint satisfaction problem

Author:

Sassi ImadORCID,Anter Samir,Bekkhoucha Abdelkrim

Abstract

AbstractTo address the challenges of big data analytics, several works have focused on big data optimization using metaheuristics. The constraint satisfaction problem (CSP) is a fundamental concept of metaheuristics that has shown great efficiency in several fields. Hidden Markov models (HMMs) are powerful machine learning algorithms that are applied especially frequently in time series analysis. However, one issue in forecasting time series using HMMs is how to reduce the search space (state and observation space). To address this issue, we propose a graph-based big data optimization approach using a CSP to enhance the results of learning and prediction tasks of HMMs. This approach takes full advantage of both HMMs, with the richness of their algorithms, and CSPs, with their many powerful and efficient solver algorithms. To verify the validity of the model, the proposed approach is evaluated on real-world data using the mean absolute percentage error (MAPE) and other metrics as measures of the prediction accuracy. The conducted experiments show that the proposed model outperforms the conventional model. It reduces the MAPE by 0.71% and offers a particularly good trade-off between computational costs and the quality of results for large datasets. It is also competitive with benchmark models in terms of the running time and prediction accuracy. Further comparisons substantiate these experimental findings.

Publisher

Springer Science and Business Media LLC

Subject

Information Systems and Management,Computer Networks and Communications,Hardware and Architecture,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Enhanced Hidden Markov Models for Improved Stock Market Price Forecasting and Prediction;Proceedings of the Cognitive Models and Artificial Intelligence Conference;2024-05-25

2. Enriching Big Data Intrusion Detection and Service Through Mapping and Parallel Computation;Lecture Notes in Networks and Systems;2024

3. Research on Cloud Service Artificial Intelligence Evaluation Algorithm Based on Big Data Resource Awareness Mechanism;2023 IEEE International Conference on Electrical, Automation and Computer Engineering (ICEACE);2023-12-29

4. VeilGraph: incremental graph stream processing;Journal of Big Data;2022-02-23

5. Hidden Markov Model for Improving Resource Utilization of Dehydration Rice Paddy Service in Community Cooperatives;2022 Joint International Conference on Digital Arts, Media and Technology with ECTI Northern Section Conference on Electrical, Electronics, Computer and Telecommunications Engineering (ECTI DAMT & NCON);2022-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3