Evaluation of Heat Stress Effects in Different Geographical Areas on Milk and Rumen Characteristics in Holstein Dairy Cows Using Robot Milking and Rumen Sensors: A Survey in South Korea

Author:

Jo Jang-HoonORCID,Nejad Jalil GhassemiORCID,Lee Jae-Sung,Lee Hong-GuORCID

Abstract

This survey investigated, using robotic milking and rumen sensors, the effects of an adjusted temperature–humidity index (THI) in different geographical areas on milk yield, fat and protein, rumen temperature, and activity in lactating Holstein cows. We additionally explored the effect of parity on milk and rumen temperature and activity under different THI levels during the summer. From January to September 2020, four farms (276 dairy cows) were subjected to the use of robot milking machines, and two farms (162 dairy cows) to the use of rumen sensors. For the temperature and humidity data, the THI was calculated on the basis of the data from the Korea Meteorological Administration (KMA). The data were analyzed using the GLM procedure of SAS. Milk yield and milk protein decreased (p < 0.05), and milk fat increased (p < 0.05) at all farms during the summer, from July to August, when the temperature and humidity were high (THI = 72–79). Milk yields were the highest in the fifth, sixth, seventh, and eighth parities, and the lowest in the fourth (p < 0.05). Milk fat concentration was the highest in the fourth parity and the lowest in the first parity (p < 0.05). In the first parity, the highest levels of milk protein and lactose were seen (5.24% and 4.90%, respectively). However, milk protein concentration was the lowest in the third parity, and the lactose concentration was the lowest in the fifth, sixth, seventh, and eighth parities. According to the rumen sensor, the rumen temperature of the dairy cows at the two farms also continued to increase (p < 0.05) from July to August, and then decreased (p < 0.05) in September. However, the activity in the rumen was increased (p < 0.05) from July to September. In the second parity, the highest rumen temperature (39.02 °C) was observed, while the lowest value (38.28 °C) was observed in the third parity. The highest value of rumen activity (12.26 mg) was observed in the second parity and the lowest value (11.31 mg) in the fourth parity. These data, taken together, confirm that a high THI during summer conditions negatively affects milk yield, milk protein content, and rumen temperature and activity in lactating Holstein cows. It is also demonstrated that various parities affect milk characteristics and the rumen environment in the summer season.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Reference50 articles.

1. Challenges and Tendencies of Automatic Milking Systems (AMS): A 20-Years Systematic Review of Literature and Patents

2. Economic efficiency of automatic milking systems with specific emphasis on increases in milk production;Wade,2004

3. Review: Rumen sensors: data and interpretation for key rumen metabolic processes

4. Investigations into System and Cow Performance Efficiency in Pasture-Based Automatic Milking Systems;Molfino;Ph.D. Thesis,2018

5. Characterization of Short-Term Heat Stress in Holstein Dairy Cows Using Altered Indicators of Metabolomics, Blood Parameters, Milk MicroRNA-216 and Characteristics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3