Evaluation of an Object Detection Algorithm for Shrapnel and Development of a Triage Tool to Determine Injury Severity

Author:

Snider Eric J.ORCID,Hernandez-Torres Sofia I.,Avital GuyORCID,Boice Emily N.

Abstract

Emergency medicine in austere environments rely on ultrasound imaging as an essential diagnostic tool. Without extensive training, identifying abnormalities such as shrapnel embedded in tissue, is challenging. Medical professionals with appropriate expertise are limited in resource-constrained environments. Incorporating artificial intelligence models to aid the interpretation can reduce the skill gap, enabling identification of shrapnel, and its proximity to important anatomical features for improved medical treatment. Here, we apply a deep learning object detection framework, YOLOv3, for shrapnel detection in various sizes and locations with respect to a neurovascular bundle. Ultrasound images were collected in a tissue phantom containing shrapnel, vein, artery, and nerve features. The YOLOv3 framework, classifies the object types and identifies the location. In the testing dataset, the model was successful at identifying each object class, with a mean Intersection over Union and average precision of 0.73 and 0.94, respectively. Furthermore, a triage tool was developed to quantify shrapnel distance from neurovascular features that could notify the end user when a proximity threshold is surpassed, and, thus, may warrant evacuation or surgical intervention. Overall, object detection models such as this will be vital to compensate for lack of expertise in ultrasound interpretation, increasing its availability for emergency and military medicine.

Funder

US Army Medical Research and Development Command

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Graphics and Computer-Aided Design,Computer Vision and Pattern Recognition,Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3