Using Ultrasound Image Augmentation and Ensemble Predictions to Prevent Machine-Learning Model Overfitting

Author:

Snider Eric J.1ORCID,Hernandez-Torres Sofia I.1,Hennessey Ryan1

Affiliation:

1. U.S. Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX 78234, USA

Abstract

Deep learning predictive models have the potential to simplify and automate medical imaging diagnostics by lowering the skill threshold for image interpretation. However, this requires predictive models that are generalized to handle subject variability as seen clinically. Here, we highlight methods to improve test accuracy of an image classifier model for shrapnel identification using tissue phantom image sets. Using a previously developed image classifier neural network—termed ShrapML—blind test accuracy was less than 70% and was variable depending on the training/test data setup, as determined by a leave one subject out (LOSO) holdout methodology. Introduction of affine transformations for image augmentation or MixUp methodologies to generate additional training sets improved model performance and overall accuracy improved to 75%. Further improvements were made by aggregating predictions across five LOSO holdouts. This was done by bagging confidences or predictions from all LOSOs or the top-3 LOSO confidence models for each image prediction. Top-3 LOSO confidence bagging performed best, with test accuracy improved to greater than 85% accuracy for two different blind tissue phantoms. This was confirmed by gradient-weighted class activation mapping to highlight that the image classifier was tracking shrapnel in the image sets. Overall, data augmentation and ensemble prediction approaches were suitable for creating more generalized predictive models for ultrasound image analysis, a critical step for real-time diagnostic deployment.

Funder

United States Department of Defense

Oak Ridge Associated Universities

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3