An Innovative Solution Based on TSCA-ViT for Osteosarcoma Diagnosis in Resource-Limited Settings

Author:

He Zengxiao1,Liu Jun2,Gou Fangfang3,Wu Jia134ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University, Changsha 410083, China

2. The Second People’s Hospital of Huaihua, Huaihua 418000, China

3. State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China

4. Research Center for Artificial Intelligence, Monash University, Melbourne, Clayton, VIC 3800, Australia

Abstract

Identifying and managing osteosarcoma pose significant challenges, especially in resource-constrained developing nations. Advanced diagnostic methods involve isolating the nucleus from cancer cells for comprehensive analysis. However, two main challenges persist: mitigating image noise during the capture and transmission of cellular sections, and providing an efficient, accurate, and cost-effective solution for cell nucleus segmentation. To tackle these issues, we introduce the Twin-Self and Cross-Attention Vision Transformer (TSCA-ViT). This pioneering AI-based system employs a directed filtering algorithm for noise reduction and features an innovative transformer architecture with a twin attention mechanism for effective segmentation. The model also incorporates cross-attention-enabled skip connections to augment spatial information. We evaluated our method on a dataset of 1000 osteosarcoma pathology slide images from the Second People’s Hospital of Huaihua, achieving a remarkable average precision of 97.7%. This performance surpasses traditional methodologies. Furthermore, TSCA-ViT offers enhanced computational efficiency owing to its fewer parameters, which results in reduced time and equipment costs. These findings underscore the superior efficacy and efficiency of TSCA-ViT, offering a promising approach for addressing the ongoing challenges in osteosarcoma diagnosis and treatment, particularly in settings with limited resources.

Funder

The Hunan Provincial Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3