RhoGDI1-Cdc42 Signaling Is Required for PDGF-BB-Induced Phenotypic Transformation of Vascular Smooth Muscle Cells and Neointima Formation

Author:

Qi Yan,Liang Xiuying,Guan Haijing,Sun Jingwen,Yao WenjuanORCID

Abstract

RhoGTPase is involved in PDGF-BB-mediated VSMC phenotypic modulation. RhoGDIs are key factors in regulating RhoGTPase activation. In the present study, we investigated the regulatory effect of RhoGDI1 on the activation of RhoGTPase in VSMC transformation and neointima formation. Western blot and co-immunoprecipitation assays showed that the PDGF receptor inhibition by crenolanib promoted RhoGDI1 polyubiquitination and degradation. Inhibition of RhoGDI1 degradation via MG132 reversed the decrease in VSMC phenotypic transformation. In addition, RhoGDI1 knockdown significantly inhibited VSMC phenotypic transformation and neointima formation in vitro and in vivo. These results suggest that PDGF-BB promotes RhoGDI1 stability via the PDGF receptor and induces the VSMC synthetic phenotype. The co-immunoprecipitation assay showed that PDGF-BB enhanced the interaction of RhoGDI1 with Cdc42 and promoted the activation of Cdc42; these enhancements were blocked by crenolanib and RhoGDI1 knockdown. Moreover, RhoGDI1 knockdown and crenolanib pretreatment prevented the localization of Cdc42 to the plasma membrane (PM) to activate and improve the accumulation of Cdc42 on endoplasmic reticulum (ER). Furthermore, Cdc42 inhibition or suppression significantly reduced VSMC phenotypic transformation and neointima formation in vitro and in vivo. This study revealed the novel mechanism by which RhoGDI1 stability promotes the RhoGDI1-Cdc42 interaction and Cdc42 activation, thereby affecting VSMC phenotypic transformation and neointima formation.

Funder

National Natural Sciences Foundation of China

Key University Science Research Project of Jiangsu Province

Publisher

MDPI AG

Subject

General Biochemistry, Genetics and Molecular Biology,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3