Restenosis after coronary angioplasty. Potential biologic determinants and role of intimal hyperplasia.

Author:

Liu M W1,Roubin G S1,King S B1

Affiliation:

1. Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.

Abstract

Restenosis after successful PTCA remains a major problem limiting the efficacy of the procedure. The pathophysiologic mechanism of restenosis has been enigmatic so far, but accumulated evidence strongly suggests that intimal hyperplasia is the major mechanism. Based on current understanding of the process of intimal hyperplasia, one unifying concept may be that there are at least two major local biologic determinants influencing this process, lesion characteristics and regional flow dynamics. Lesion characteristics include the plaque structure and the quantity of smooth muscle. These may provide the anatomic substrate that determines the extent of injury and the degree of smooth muscle cell proliferation. The amount of smooth muscle cells in the stenotic lesion activated by injury to undergo proliferation may determine the eventual bulk of the restenotic lesion. In addition, low wall shear stress could promote intimal hyperplasia and cause structural change of vessels to decrease the lumen, whereas high wall shear stress exerts the opposite effects. Intimal hyperplasia after balloon injury is a complex process involving platelets, growth factors, endothelial cells, smooth muscle cells, mechanical injury, wall shear stress, and probably other unknown factors. Platelets not only contribute growth factors such as PDGF but also cause organized thrombus. Different growth factors may be involved in initiating smooth muscle cell proliferation and may come from many different sources, including smooth muscle cells, endothelial cells, and macrophages. Intact confluent endothelial cells may produce heparin sulfates and inhibit intimal proliferation; however, regenerating endothelial cells may have the opposite effect. Thus, the proliferative potential of smooth muscle cells, endothelial recovery, extent of injury, wall shear stress, and other unknown factors may all influence this process. Based on these concepts concerning the biology of restenosis, some research directions concerning potential forms of therapy are proposed.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Physiology (medical),Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3