Water Flow Boiling in Micro/Mini Channels Using Volume of Fluid Model

Author:

Khan Mughal Muhammad Umer1ORCID,Waheed Khalid1,Sadiq Muhammad Imran2,Molla Altaf Hossain2ORCID,Harun Zambri2ORCID,Etminan Amin3ORCID

Affiliation:

1. Department of Mechanical Engineering, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad 46000, Pakistan

2. Department of Mechanical and Manufacturing Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia

3. Department of Mechanical Engineering, Faculty of Engineering and Applied Science, Memorial University of Newfoundland (MUN), St. John’s, NL A1B 3X5, Canada

Abstract

Recent advancements in computational fluid dynamics (CFD) have triggered research in the field of heat exchangers. Driven by the need to decrease the size of heat exchangers, many researchers have exploited the higher heat transfer achieved by replacing single-phase flow systems with boiling counterparts. The concept of using mini-channels to provide compact heat exchangers while maintaining heat transfer performance is relatively new. A minimal number of researchers have reported simulations of water-steam systems in mini-channels. This paper presents a numerical study of the heat transfer performance (HTP) of mini channels in a water-steam system using the volume of fluid (VOF) model coupled with the Lee phase change model on commercial CFD software ANSYS. The numerical model consisted of a 1 mm × 1.5 mm × 52 mm channel with boundary conditions: top adiabatic; constant heat flux at the bottom surface; left/right periodic; mass flow inlet and pressure outlet. A mesh independence study was carried out for the proposed model, and simulations were validated against the experimental results of heat transfer versus vapor quality for a wide range of mass and heat fluxes. The VOF model best predicts experimental HTC at high mass fluxes, although the results at low mass fluxes were predicted with reasonable accuracy. Based on the agreement of numerical and numerical results, the VOF model turned out to be a promising candidate for designing compact micro/mini channel heat exchangers.

Funder

Transdisciplinary Research Grant Scheme

UKM internal grant

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3