Towards a Better Vision of Retinoic Acid Signaling during Eye Development

Author:

Duester GreggORCID

Abstract

Retinoic acid (RA) functions as an essential signal for development of the vertebrate eye by controlling the transcriptional regulatory activity of RA receptors (RARs). During eye development, the optic vesicles and later the retina generate RA as a metabolite of vitamin A (retinol). Retinol is first converted to retinaldehyde by retinol dehydrogenase 10 (RDH10) and then to RA by all three retinaldehyde dehydrogenases (ALDH1A1, ALDH1A2, and ALDH1A3). In early mouse embryos, RA diffuses to tissues throughout the optic placode, optic vesicle, and adjacent mesenchyme to stimulate folding of the optic vesicle to form the optic cup. RA later generated by the retina is needed for further morphogenesis of the optic cup and surrounding perioptic mesenchyme; loss of RA at this stage leads to microphthalmia and cornea plus eyelid defects. RA functions by binding to nuclear RARs at RA response elements (RAREs) that either activate or repress transcription of key genes. Binding of RA to RARs regulates recruitment of transcriptional coregulators such as nuclear receptor coactivator (NCOA) or nuclear receptor corepressor (NCOR), which in turn control binding of the generic coactivator p300 or the generic corepressor PRC2. No genes have been identified as direct targets of RA signaling during eye development, so future studies need to focus on identifying such genes and their RAREs. Studies designed to learn how RA normally controls eye development in vivo will provide basic knowledge valuable for determining how developmental eye defects occur and for improving strategies to treat eye defects.

Funder

National Eye Institute

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3