KLVFF Conjugated Curcumin Microemulsion-Based Hydrogel for Transnasal Route: Formulation Development, Optimization, Physicochemical Characterization, and Ex Vivo Evaluation

Author:

Phongpradist Rungsinee1,Jiaranaikulwanitch Jutamas1ORCID,Thongkorn Kriangkrai2ORCID,Lekawanvijit Suree3ORCID,Sirilun Sasithorn1ORCID,Chittasupho Chuda1ORCID,Poomanee Worrapan1ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand

2. Department of Companion Animals and Wildlife Clinic, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand

3. Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand

Abstract

Curcumin is a potent natural compound used to treat Alzheimer’s disease (AD). However, the clinical usefulness of curcumin to treat AD is restricted by its low oral bioavailability and difficulty permeating the blood-brain barrier. To overcome such drawbacks, various alternative strategies have been explored, including the transnasal route. However, rapid mucociliary clearance in the nasal cavity is a major hindrance to drug delivery. Thus, designing a delivery system for curcumin to lengthen the contact period between the drug and nasal mucosa must be employed. This study describes the optimization of KLVFF conjugated curcumin microemulsion-base hydrogel (KCMEG) to formulate a prototype transnasal preparation using the response surface method to improve a mucoadhesive property. A central composite design was employed to optimize and evaluate two influencing factors: the concentration of carbopol 940 and the percentage of KLVFF conjugated curcumin microemulsion (KCME). The physicochemical properties, anti-cholinesterase activity, and anti-aggregation activities of KCME were investigated in this study. The studied factors, in terms of main and interaction effects, significantly (p < 0.05) influenced hardness and adhesiveness. The optimized KCMEG was evaluated for pH, spreadability, and mucoadhesive properties. Ex vivo nasal ciliotoxicity to optimize KCMEG was performed through the porcine nasal mucosa. KCME was transparent, with a mean globule size of 70.8 ± 3.4 nm and a pH of 5.80 ± 0.02. The optimized KCMEG containing 2% carbopol 940 showed higher in vitro mucoadhesive potential (9.67 ± 0.13 min) compared with microemulsion and was also found to be free from nasal ciliotoxicity during histopathologic evaluation of the porcine nasal mucosa. The result revealed that both the concentration of carbopol 940 and the percentage of KCME play a crucial role in mucoadhesive properties. In conclusion, incorporating a mucoadhesive agent in a microemulsion can increase the retention time of the formulation, leading to enhanced brain delivery of the drug. Findings from the investigation revealed that KCMEG has the potential to constitute a promising approach to treating AD via transnasal administration.

Funder

Chiang Mai University

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3