Sustainable Cotton Gin Waste/Polycaprolactone Bio-Plastic with Adjustable Biodegradation Rate: Scale-Up Production through Compression Moulding

Author:

Cai Zengxiao1,Haque Abu Naser Md Ahsanul1ORCID,Dhandapani Renuka2,Naebe Maryam1ORCID

Affiliation:

1. Institute for Frontier Materials, Deakin University, Geelong, VIC 3216, Australia

2. Cotton Incorporated, 6399 Weston Parkway, Cary, NC 27513, USA

Abstract

Cotton gin trash (CGT), a lignocellulosic waste generated during cotton fibre processing, has recently received significant attention for production of composite bio-plastics. However, earlier studies were limited to either with biodegradable polymers, through small-scale solution-casting method, or using industrially adaptable extrusion route, but with non-biodegradable polymers. In this study, a scale-up production of completely biodegradable CGT composite plastic film with adjustable biodegradation rate is proposed. First using a twin screw extruder, the prepared CGT powder was combined with polycaprolactone (PCL) to form pellets, and then using the compressing moulding, the pellets were transformed into bio-plastic composite films. Hydrophilic polyethylene glycol (PEG) was used as a plasticiser in the mixture and its impact on the biodegradation rate was analysed. The morphology of CGT bio-plastic composite films showed even distribution of CGT powder within the PCL matrix. The CGT incorporation improved the UV resistance, thermal stability, and Young’s modulus of PCL material. Further, the flexibility and mixing properties of the composites were improved by PEG. Overall, this study demonstrated a sustainable production method of CGT bio-plastic films using the whole CGT and without any waste residue produced, where the degradation of the produced composite films can be adjusted to minimise the environmental impact.

Funder

Cotton Incorporated USA

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3