Specific Bamboo Forest Extraction and Long-Term Dynamics as Revealed by Landsat Time Series Stacks and Google Earth Engine

Author:

You ShixueORCID,Zheng QimingORCID,Lin Yue,Zhu Congmou,Li Chenlu,Deng Jinsong,Wang Ke

Abstract

Understanding the spatiotemporal dynamics of bamboo forests is of critical importance as it characterizes the interaction between forest and agricultural ecosystems and provides essential information for sustainable ecosystem management and decision-making. Thus far, the specific dynamics of moso bamboo (Phyllostachys edulis) and other bamboo are still unknown. In this study, we used temporal information extracted from Landsat time series stacks with Google Earth Engine (GEE) to characterize the spatiotemporal dynamics of bamboo forests, including moso bamboo and other bamboo, in Lin’an County, China, from 2000 to 2019. The bamboo forests were mapped in four periods: the early 2000s (2000–2004), the late 2000s (2005–2009), the early 2010s (2010–2014), and the late 2010s (2015–2019). The overall accuracy of these maps ranged from 97% to 99%. We then analyzed the spatiotemporal dynamics of the bamboo forests at the county and subdistrict/township scales, and probed the bamboo forest gain and loss with respect to the terrain features. Our findings show that bamboo forests increased by 4% from 2000 to 2014, followed by a sharp decrease of 13% in the late 2010s. The decrease was mainly caused by the loss of other bamboo. Approximately 69% of the bamboo forest gain occurred in non-bamboo forest areas, and the rest occupied non-forest areas. Bamboo forest loss was mainly due to conversion into orchard (59%) and forest plantation (22%). Compared to bamboo forest gain, bamboo forest loss was typically observed in areas with lower elevations and steeper slopes. Our study offers spatially explicit and timely insight into bamboo forest changes at the regional scale. The derived maps can be applied to study the drivers, consequences, and future trends of bamboo forest dynamics, which will contribute to sustainable ecosystem management.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3