Modeling Landslide Susceptibility in Forest-Covered Areas in Lin’an, China, Using Logistical Regression, a Decision Tree, and Random Forests

Author:

Chen Chongzhi1,Shen Zhangquan1ORCID,Weng Yuhui2ORCID,You Shixue3ORCID,Lin Jingya1,Li Sinan1ORCID,Wang Ke1

Affiliation:

1. College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China

2. Arthur Temple College of Forestry and Agriculture, Stephen F. Austin State University, Nacogdoches, TX 75965, USA

3. College of Economics and Management, China Jiliang University, Hangzhou 310018, China

Abstract

Landslides are a common geodynamic phenomenon that cause substantial life and property damage worldwide. In the present study, we developed models to evaluate landslide susceptibility in forest-covered areas in Lin’an, southeastern China using logistic regression (LR), decision tree (DT), and random forest (RF) techniques. In addition to conventional landslide-related natural and human disturbance factors, factors describing forest cover, including forest type (two plantations (hickory and bamboo) and four natural forests (conifer, hardwood, shrub, and moso bamboo) and understory vegetation conditions, were included as predictors. Model performance was evaluated based on true-positive rate, Kappa value, and area under the ROC curve using a 10-fold cross-validation method. All models exhibited good performance with measures of ≥0.70, although the LR model was relatively inferior. The key predictors were forest type, understory vegetation height (UVH), normalized differential vegetation index (NDVI) in summer, distance to road (DTRD), and maximum daily rainfall (MDR). Hickory plantations yielded the highest landslide probability, while conifer and hardwood forests had the lowest values. Bamboo plantations had probability results comparable to those of natural forests. Using the RF model, areas with a shorter UVH (<1.2 m), a lower NDVI (<0.70), a heavier MDR (>115 mm), or a shorter DTRD (<500 m) were predicted to be landslide-prone. Information on forest cover is essential for predicting landslides in areas with rich forest cover, and conversion from natural forests to plantations could increase landslide risk. Across the study areas, the northwestern part was the most landslide-prone. In terms of landslide prevention, the RF model-based map produced the most accurate predictions for the “very high” category of landslide. These results will help us better understand landslide occurrences in forest-covered areas and provide valuable information for governments in designing disaster mitigation.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3