High-Capacity Multiple-Input Multiple-Output Communication for Internet-of-Things Applications Using 3D Steering Nolen Beamforming Array

Author:

Zhang Hanxiang1ORCID,Yan Hao1,Liu Powei1,Pour Saeed Zolfaghary1,Arigong Bayaner1ORCID

Affiliation:

1. College of Engineering, Florida A&M University, Tallahassee, FL 32310, USA

Abstract

In this paper, a novel 2D Nolen beamforming phased array with 3D scanning capability to achieve high channel capacity is presented for multiple-input multiple-output (MIMO) Internet-of-Things (IoT) applications. The proposed 2D beamforming phased array is designed by stacking a fundamental building block consisting of a 3 × 3 tunable Nolen matrix, which applies a small number of phase shifters with a small tunning range and reduces the complexity of the beam-steering control mechanism. Each 3 × 3 tunable Nolen matrix can achieve a full 360° range of progressive phase delay by exciting all three input ports, and nine individual radiation beams can be generated and continuously steered on azimuth and elevation planes by stacking up three tunable Nolen matrix in horizontal and three in vertical to maximize signal-to-noise ratio (SNR) in the corresponding spatial directions. To validate the proposed design, the simulations have been conducted on the circuit network and assessed in a fading channel environment. The simulation results agree well with the theoretical analysis, which demonstrates the capability of the proposed 2D Nolen beamforming phased array to realize high channel capacity in MIMO-enabled IoT communications.

Funder

NSF

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3