Active Eavesdropping Detection Based on Large-Dimensional Random Matrix Theory for Massive MIMO-Enabled IoT

Author:

Xu Li,Chen Jiaqi,Liu MingORCID,Wang Xiaoyi

Abstract

The increasing Internet-of-Things (IoT) applications will take a significant share of the services of the fifth generation mobile network (5G). However, IoT devices are vulnerable to security threats due to the limitation of their simple hardware and communication protocol. Massive multiple-input multiple-output (massive MIMO) is recognized as a promising technique to support massive connections of IoT devices, but it faces potential physical layer breaches. An active eavesdropper can compromises the communication security of massive MIMO systems by purposely contaminating the uplink pilots. According to the random matrix theory (RMT), the eigenvalue distribution of a large dimensional matrix composed of data samples converges to the limit spectrum distribution that can be characterized by matrix dimensions. With the assistance of RMT, we propose an active eavesdropping detection method in this paper. The theoretical limit spectrum distribution is exploited to determine the distribution range of the eigenvalues of a legitimate user signal. In addition the noise components are removed using the Marčenko–Pastur law of RMT. Hypothesis testing is then carried out to determine whether the spread range of eigenvalues is “normal” or not. Simulation results show that, compared with the classical Minimum Description Length (MDL)-based detection algorithm, the proposed method significantly improves active eavesdropping detection performance.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High-Capacity Multiple-Input Multiple-Output Communication for Internet-of-Things Applications Using 3D Steering Nolen Beamforming Array;Electronics;2024-06-22

2. Performance Analysis of OSPR Against Eavesdropping in MIMO;2024 International Conference on Distributed Computing and Optimization Techniques (ICDCOT);2024-03-15

3. Intrusion detection based on machine learning in the internet of things, attacks and counter measures;The Journal of Supercomputing;2022-01-14

4. Security and Threats in the Internet of Things Based Smart Home;Lecture Notes on Data Engineering and Communications Technologies;2021

5. 5G Network Security for IoT Implementation: A Systematic Literature Review;Innovation and Research;2020-11-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3