Reservoir Optimization Scheduling Driven by Knowledge Graphs

Author:

Tang Hailin12ORCID,Feng Jun12ORCID,Zhou Siyuan12ORCID

Affiliation:

1. Key Laboratory of Water Big Data Technology of Ministry of Water Resources, Hohai University, Nanjing 211100, China

2. College of Computer Science and Software Engineering, Hohai University, Nanjing 211100, China

Abstract

As global climate change intensifies, the challenges of water scarcity and flood disasters become increasingly severe. This severity makes efficient reservoir scheduling management crucial for the rational utilization of water resources. Due to the diverse topological structures and varying objectives of different watersheds, existing optimization models and algorithms are typically applicable only to specific watershed environments. This specificity results in a “one watershed, one model” limitation. Consequently, optimization of different watersheds usually requires manual reconstruction of models and algorithms. This process is not only time-consuming but also limits the versatility and flexibility of the algorithms. To address this issue, this paper proposes a knowledge graph-driven method for reservoir optimization scheduling. By improving genetic algorithms, this method allows for the automatic construction of optimization models tailored to specific watershed characteristics based on knowledge graphs. This approach reduces the dependency of the optimization model on manual modeling. It also integrates hydrodynamic simulations within the watershed to ensure the effectiveness and practicality of the genetic algorithms. Furthermore, this paper has developed an algorithm that directly converts optimized reservoir outflow into actionable dispatch instructions. This method has been applied in the Pihe River Basin, optimizing flood control and resource management strategies according to different seasonal demands. It demonstrates high flexibility and effectiveness under varying hydrological conditions, significantly enhancing the operational efficiency of reservoir management.

Funder

The National Key R&D Program of China

The Water Conservancy Science and Technology Program of Jiangsu

Major Science and Technology Program of The Ministry of Water Resources

The Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3