VRBagged-Net: Ensemble Based Deep Learning Model for Disaster Event Classification

Author:

Hanif Muhammad,Tahir Muhammad AtifORCID,Rafi MuhammadORCID

Abstract

A flood is an overflow of water that swamps dry land. The gravest effects of flooding are the loss of human life and economic losses. An early warning of these events can be very effective in minimizing the losses. Social media websites such as Twitter and Facebook are quite effective in the efficient dissemination of information pertinent to any emergency. Users on these social networking sites share both textual and rich content images and videos. The Multimedia Evaluation Benchmark (MediaEval) offers challenges in the form of shared tasks to develop and evaluate new algorithms, approaches and technologies for explorations and exploitations of multimedia in decision making for real time problems. Since 2015, the MediaEval has been running a shared task of predicting several aspects of flooding and through these shared tasks, many improvements have been observed. In this paper, the classification framework VRBagged-Net is proposed and implemented for flood classification. The framework utilizes the deep learning models Visual Geometry Group (VGG) and Residual Network (ResNet), along with the technique of Bootstrap aggregating (Bagging). Various disaster-based datasets were selected for the validation of the VRBagged-Net framework. All the datasets belong to the MediaEval Benchmark Workshop, this includes Disaster Image Retrieval from Social Media (DIRSM), Flood Classification for Social Multimedia (FCSM) and Image based News Topic Disambiguation (INTD). VRBagged-Net performed encouraging well in all these datasets with slightly different but relevant tasks. It produces Mean Average Precision at different levels of 98.12, and Average Precision at 480 of 93.64 on DIRSM. On the FCSM dataset, it produces an F1 score of 90.58. Moreover, the framework has been applied on the dataset of Image-Based News Topic Disambiguation (INTD), and exceeds the previous best result by producing an F1 evaluation of 93.76. The VRBagged-Net with a slight modification also ranked first in the flood-related Multimedia Task at the MediaEval Workshop 2020.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference54 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3