Detection of Targets in Road Scene Images Enhanced Using Conditional GAN-Based Dehazing Model

Author:

Chow Tsz-Yeung1,Lee King-Hung1,Chan Kwok-Leung1ORCID

Affiliation:

1. Department of Electrical Engineering, City University of Hong Kong, Hong Kong, China

Abstract

Object detection is a classic image processing problem. For instance, in autonomous driving applications, targets such as cars and pedestrians are detected in the road scene video. Many image-based object detection methods utilizing hand-crafted features have been proposed. Recently, more research has adopted a deep learning approach. Object detectors rely on useful features, such as the object’s boundary, which are extracted via analyzing the image pixels. However, the images captured, for instance, in an outdoor environment, may be degraded due to bad weather such as haze and fog. One possible remedy is to recover the image radiance through the use of a pre-processing method such as image dehazing. We propose a dehazing model for image enhancement. The framework was based on the conditional generative adversarial network (cGAN). Our proposed model was improved with two modifications. Various image dehazing datasets were employed for comparative analysis. Our proposed model outperformed other hand-crafted and deep learning-based image dehazing methods by 2dB or more in PSNR. Moreover, we utilized the dehazed images for target detection using the object detector YOLO. In the experimentations, images were degraded by two weather conditions—rain and fog. We demonstrated that the objects detected in images enhanced by our proposed dehazing model were significantly improved over those detected in the degraded images.

Funder

Research Grants Council of the Hong Kong Special Administrative Region, China

City University of Hong Kong Strategic Research Grant

Lexiwave Technology (Hong Kong) Ltd.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3