Feature Fusion Image Dehazing Network Based on Hybrid Parallel Attention

Author:

Chen Hong12,Chen Mingju12,Li Hongyang12,Peng Hongming12,Su Qin12

Affiliation:

1. School of Automation and Information Engineering, Sichuan University of Science and Engineering, Yibin 644005, China

2. Artificial Intelligence Key Laboratory of Sichuan Province, Sichuan University of Science and Engineering, Yibin 644005, China

Abstract

Most of the existing dehazing methods ignore some global and local detail information when processing images and fail to fully combine feature information at different levels, which leads to contrast imbalance and residual haze in the dehazed images. To this end, this article proposes a image dehazing network based on hybrid parallel attention feature fusion, called the HPA-HFF network. This network is an optimization of the basic network, FFA-Net. First, the hybrid parallel attention (HPA) module is introduced, which uses parallel connections to mix different types of attention mechanisms, which can not only enhance the extraction and fusion capabilities of global spatial context information but also enhance the expression capabilities of features and have better dehazing effects on uneven distribution of haze. Second, the hierarchical feature fusion (HFF) module is introduced, which dynamically fuses feature maps from different paths to adaptively increase their receptive field and refine and enhance image features. Experimental results demonstrate that the HPA-HFF network proposed in this article is contrasted with eight mainstream dehazing networks on the public dataset RESIDE. The HPA-HFF network achieves the highest PSNR (39.41) and SSIM (0.9967) and obtains a good dehazing effect in subjective vision.

Funder

Zigong City Key Science and Technology Project

Opening Fund of Artificial Intelligence Key Laboratory of Sichuan Province

the 2022 Graduate Innovation Fund of Sichuan University of Science and Engineering

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3