Adaptive Decoding for Brain-Machine Interfaces Through Bayesian Parameter Updates

Author:

Li Zheng1,O'Doherty Joseph E.1,Lebedev Mikhail A.1,Nicolelis Miguel A. L.2

Affiliation:

1. Department of Neurobiology and Center for Neuroengineering, Duke University, Durham, NC 27710, U.S.A.

2. Departments of Neurobiology, Biomedical Engineering, and Psychology and Neuroscience, and Center for Neuroengineering, Duke University, Durham, NC 27719, U.S.A.; and Edmond and Lily Safra International Institute of Neuroscience of Natal, 59066-060 Natal, Brazil

Abstract

Brain-machine interfaces (BMIs) transform the activity of neurons recorded in motor areas of the brain into movements of external actuators. Representation of movements by neuronal populations varies over time, during both voluntary limb movements and movements controlled through BMIs, due to motor learning, neuronal plasticity, and instability in recordings. To ensure accurate BMI performance over long time spans, BMI decoders must adapt to these changes. We propose the Bayesian regression self-training method for updating the parameters of an unscented Kalman filter decoder. This novel paradigm uses the decoder's output to periodically update its neuronal tuning model in a Bayesian linear regression. We use two previously known statistical formulations of Bayesian linear regression: a joint formulation, which allows fast and exact inference, and a factorized formulation, which allows the addition and temporary omission of neurons from updates but requires approximate variational inference. To evaluate these methods, we performed offline reconstructions and closed-loop experiments with rhesus monkeys implanted cortically with microwire electrodes. Offline reconstructions used data recorded in areas M1, S1, PMd, SMA, and PP of three monkeys while they controlled a cursor using a handheld joystick. The Bayesian regression self-training updates significantly improved the accuracy of offline reconstructions compared to the same decoder without updates. We performed 11 sessions of real-time, closed-loop experiments with a monkey implanted in areas M1 and S1. These sessions spanned 29 days. The monkey controlled the cursor using the decoder with and without updates. The updates maintained control accuracy and did not require information about monkey hand movements, assumptions about desired movements, or knowledge of the intended movement goals as training signals. These results indicate that Bayesian regression self-training can maintain BMI control accuracy over long periods, making clinical neuroprosthetics more viable.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3