Audio-induced medial prefrontal cortical dynamics enhances coadaptive learning in brain–machine interfaces

Author:

Tan JieyuanORCID,Zhang XiangORCID,Wu ShenghuiORCID,Song ZhiweiORCID,Chen ShuhangORCID,Huang YifanORCID,Wang YiwenORCID

Abstract

Abstract Objectives. Coadaptive brain–machine interfaces (BMIs) allow subjects and external devices to adapt to each other during the closed-loop control, which provides a promising solution for paralyzed individuals. Previous studies have focused on either improving sensory feedback to facilitate subject learning or developing adaptive algorithms to maintain stable decoder performance. In this work, we aim to design an efficient coadaptive BMI framework which not only facilitates the learning of subjects on new tasks with designed sensory feedback, but also improves decoders’ learning ability by extracting sensory feedback-induced evaluation information. Approach. We designed dynamic audio feedback during the trial according to the subjects’ performance when they were trained to learn a new behavioral task. We compared the learning performance of two groups of Sprague Dawley rats, one with and the other without the designed audio feedback to show whether this audio feedback could facilitate the subjects’ learning. Compared with the traditional closed-loop in BMI systems, an additional closed-loop involving medial prefrontal cortex (mPFC) activity was introduced into the coadaptive framework. The neural dynamics of audio-induced mPFC activity was analyzed to investigate whether a significant neural response could be triggered. This audio-induced response was then translated into reward expectation information to guide the learning of decoders on a new task. The multiday decoding performance of the decoders with and without audio-induced reward expectation was compared to investigate whether the extracted information could accelerate decoders to learn a new task. Main results. The behavior performance comparison showed that the average days for rats to achieve 80% well-trained behavioral performance was improved by 26.4% after introducing the designed audio feedback sequence. The analysis of neural dynamics showed that a significant neural response of mPFC activity could be elicited by the audio feedback and the visualization of audio-induced neural patterns was emerged and accompanied by the behavioral improvement of subjects. The multiday decoding performance comparison showed that the decoder taking the reward expectation information could achieve faster task learning by 33.8% on average across subjects. Significance. This study demonstrates that the designed audio feedback could improve the learning of subjects and the mPFC activity induced by audio feedback can be utilized to improve the decoder’s learning efficiency on new tasks. The coadaptive framework involving mPFC dynamics in the closed-loop interaction can advance the BMIs into a more adaptive and efficient system with learning ability on new tasks.

Funder

STI 2030-Major Projects

National Natural Science Foundation of China

Chau Hoi Shuen Foundation

Seed fund of the Big Data for Bio-Intelligence Laboratory from Hong Kong Univsersity of Science and Technology

Innovation and Technology Commission

Publisher

IOP Publishing

Subject

Cellular and Molecular Neuroscience,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3