Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex

Author:

Eckhorn R.1,Reitboeck H. J.1,Arndt M.1,Dicke P.1

Affiliation:

1. Biophysics Department, Philipps-University, Renthof 7, D-3550 Marburg, Federal Republic of Germany

Abstract

We recently discovered stimulus-specific interactions between cell assemblies in cat primary visual cortex that could constitute a global linking principle for feature associations in sensory and motor systems: stimulus-induced oscillatory activities (35-80 Hz) in remote cell assemblies of the same and of different visual cortex areas mutually synchronize, if common stimulus features drive the assemblies simultaneously. Based on our neurophysiological findings we simulated feature linking via synchronizations in networks of model neurons. The networks consisted of two one-dimensional layers of neurons, coupled in a forward direction via feeding connections and in lateral and backward directions via modulatory linking connections. The models' performance is demonstrated in examples of region linking with spatiotemporally varying inputs, where the rhythmic activities in response to an input, that initially are uncorrelated, become phase locked. We propose that synchronization is a general principle for the coding of associations in and among sensory systems and that at least two distinct types of synchronization do exist: stimulus-forced (event-locked) synchronizations support “crude instantaneous” associations and stimulus-induced (oscillatory) synchronizations support more complex iterative association processes. In order to bring neural linking mechanisms into correspondence with perceptual feature linking, we introduce the concept of the linking field (association field) of a local assembly of visual neurons. The linking field extends the concept of the invariant receptive field (RF) of single neurons to the flexible association of RFs in neural assemblies.

Publisher

MIT Press - Journals

Subject

Cognitive Neuroscience,Arts and Humanities (miscellaneous)

Cited by 810 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3