Fusion of Infrared and Visible Light Images Based on Improved Adaptive Dual-Channel Pulse Coupled Neural Network

Author:

Feng Bin1ORCID,Ai Chengbo1,Zhang Haofei2

Affiliation:

1. School of Optoelectronic Engineering, Xi’an Technological University, Xi’an 710021, China

2. No. 208 Research Institute of China Ordnance Industries, Beijing 102202, China

Abstract

The pulse-coupled neural network (PCNN), due to its effectiveness in simulating the mammalian visual system to perceive and understand visual information, has been widely applied in the fields of image segmentation and image fusion. To address the issues of low contrast and the loss of detail information in infrared and visible light image fusion, this paper proposes a novel image fusion method based on an improved adaptive dual-channel PCNN model in the non-subsampled shearlet transform (NSST) domain. Firstly, NSST is used to decompose the infrared and visible light images into a series of high-pass sub-bands and a low-pass sub-band, respectively. Next, the PCNN models are stimulated using the weighted sum of the eight-neighborhood Laplacian of the high-pass sub-bands and the energy activity of the low-pass sub-band. The high-pass sub-bands are fused using local structural information as the basis for the linking strength for the PCNN, while the low-pass sub-band is fused using a linking strength based on multiscale morphological gradients. Finally, the fused high-pass and low-pass sub-bands are reconstructed to obtain the fused image. Comparative experiments demonstrate that, subjectively, this method effectively enhances the contrast of scenes and targets while preserving the detail information of the source images. Compared to the best mean values of the objective evaluation metrics of the compared methods, the proposed method shows improvements of 2.35%, 3.49%, and 11.60% in information entropy, mutual information, and standard deviation, respectively.

Funder

2022 “Insight Action” Achievement Transformation and Application Project

Publisher

MDPI AG

Reference28 articles.

1. Pedestrian detection with unsupervised multispectral feature learning using deep neural networks;Cao;Inf. Fusion,2019

2. Construction of regular and irregular shearlet frames;Kutyniok;Wavelet Theory,2007

3. The nonsubsampled contourlet transform: Theory, design, and applications;Cunha;IEEE Trans. Image Process.,2006

4. Sparse directional image representation using the discrete shearlet transforms;Easley;Appl. Comput. Harmon. Anal.,2008

5. Infrared and visible image fusion based on saliency detection and two-scale transform decomposition;Zhang;Infrared Phys. Technol.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3