The Human Intermediate Prolactin Receptor I-tail Contributes Breast Oncogenesis by Targeting Ras/MAPK Pathway

Author:

Shen Shanwei12,Radhakrishnan Senthil K13ORCID,Harrell J Chuck123ORCID,Puchalapalli Madhavi1ORCID,Koblinski Jennifer13ORCID,Clevenger Charles123ORCID

Affiliation:

1. Department of Pathology, Virginia Commonwealth University , Richmond, VA 23298 , USA

2. Wright Center for Clinical and Translational Research, Virginia Commonwealth University , Richmond, VA 23298 , USA

3. Massey Comprehensive Cancer Center, Virginia Commonwealth University , Richmond, VA 23298 , USA

Abstract

Abstract Prolactin and its receptor (PRLr) in humans are significantly involved in breast cancer pathogenesis. The intermediate form of human PRLr (hPRLrI) is produced by alternative splicing and has a novel 13 amino acid tail (“I-tail”) gain. hPRLrI induces significant proliferation and anchorage-independent growth of normal mammary epithelia in vitro when coexpressed with the long form hPRLr (hPRLrL). hPRLrL and hPRLrI coexpression is necessary to induce the transformation of mammary epithelia in vivo. The I-tail is associated with the ubiquitin-like protein neural precursor cell expressed developmentally downregulated protein 8. Treatment with the neural precursor cell expressed developmentally downregulated protein 8-activating enzyme inhibitor pevonedistat resulted in increased hPRLrL and the death of breast cancer cells. The goal of this study was to determine the function of the hPRLrI I-tail in hPRLrL/hPRLrI-mediated mammary transformation. hPRLrL/hPRLrI and hPRLrL/hPRLrIΔ13 (I-tail removal mutant) were delivered to MCF10AT cells. Cell proliferation was decreased when hPRLrI I-tail was removed. I-tail deletion decreased anchorage-independent growth and attenuated cell migration. The I-tail was involved in Ras/MAPK signaling but not PI3K/Akt signaling pathway as shown by western blot. I-tail removal resulted in decreased hPRLrI stability. RNA-sequencing data revealed that I-tail removal resulted in differential gene expression induced by prolactin. Ingenuity Pathway Analysis revealed that the activity of ERK was attenuated. Treatment of breast cancer cells with ERK1/2 inhibitor ulixertinib resulted in decreased colony-forming ability and less proliferation. These studies suggest that the hPRLrI I-tail contributed to breast oncogenesis and may be a promising target for the development of new breast cancer therapies.

Funder

Commonwealth Health Research Board

Massey Comprehensive Cancer Center

Publisher

The Endocrine Society

Reference61 articles.

1. The role of prolactin in mammary carcinoma;Clevenger;Endocr Rev,2003

2. Serum prolactin concentrations in benign breast disease throughout the menstrual cycle;Cole;Eur J Cancer,1977

3. Disordered nocturnal prolactin regulation in women with breast cancer;Malarkey;Cancer Res,1977

4. Plasma prolactin levels and subsequent risk of breast cancer in postmenopausal women;Hankinson;J Natl Cancer Inst,1999

5. Bioactive prolactin levels and risk of breast cancer: a nested case-control study;Tworoger;Cancer Epidemiol Biomarkers Prev,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3