MicroRNA Expression Profiling of Thyroid Tumors: Biological Significance and Diagnostic Utility

Author:

Nikiforova Marina N.1,Tseng George C.2,Steward David3,Diorio Donna4,Nikiforov Yuri E.1

Affiliation:

1. Department of Pathology (M.N.N., Y.E.N.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261

2. University of Pittsburgh Medical Center, and Department of Biostatistics (G.C.T.), University of Pittsburgh, Pittsburgh, Pennsylvania 15261

3. Department of Otolaryngology-Head and Neck Surgery (D.S.), University of Cincinnati College of Medicine, Cincinnati, Ohio 45267

4. Department of Pathology (D.D.), Cincinnati Children’s Hospital, Cincinnati, Ohio 45229

Abstract

Abstract Objective: MicroRNA (miRNA) expression is deregulated in many types of human cancers. We sought to investigate the expression patterns of miRNA in all major types of thyroid tumors, including tumors carrying distinct oncogenic mutations, and to explore the utility of miRNA profiling for the preoperative diagnosis of thyroid nodules. Design: miRNA expression levels were detected in 60 surgically removed thyroid neoplastic and nonneoplastic samples and in 62 fine-needle aspiration (FNA) samples by RT-PCR using TaqMan MicroRNA Panel or individual miRNA sequence-specific primers. miRNA expression levels were calculated relative to normal thyroid tissue. All tumors were genotyped for most common mutations. Results: Various histopathological types of thyroid tumors, including those deriving from the same cell type, showed significantly different profiles of miRNA expression. Oncocytic tumors, conventional follicular tumors, papillary carcinomas, and medullary carcinomas formed distinct clusters on the unsupervised hierarchical clustering analysis. Significant correlation between miRNA expression patterns and somatic mutations was observed in papillary carcinomas. A set of seven miRNAs (miR-187, miR-221, miR-222, miR-146b, miR-155, miR-224, and miR-197) that were most differentially overexpressed in thyroid tumors vs. hyperplastic nodules in the surgical samples was validated in the FNA samples, showing high accuracy of thyroid cancer detection. Conclusions: In this study, we demonstrate that various histopathological types of thyroid tumors have distinct miRNA profiles, which further differ within the same tumor type, reflecting specific oncogenic mutations. A limited set of miRNAs can be used diagnostically with high accuracy to detect thyroid cancer in the surgical and preoperative FNA samples.

Publisher

The Endocrine Society

Subject

Biochemistry (medical),Clinical Biochemistry,Endocrinology,Biochemistry,Endocrinology, Diabetes and Metabolism

Reference36 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3