Glucose-Dependent Insulinotropic Polypeptide Promotes β-(INS-1) Cell Survival via Cyclic Adenosine Monophosphate-Mediated Caspase-3 Inhibition and Regulation of p38 Mitogen-Activated Protein Kinase

Author:

Ehses Jan A.1,Casilla Vanbric R.1,Doty Tim1,Pospisilik J. Andrew1,Winter Kyle D.1,Demuth Hans-Ulrich2,Pederson Raymond A.1,McIntosh Christopher H. S.1

Affiliation:

1. Department of Physiology (J.A.E., V.R.C., T.D., J.A.P., K.D.W., R.A.P., C.H.S.M.), Faculty of Medicine, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada

2. Probiodrug Research (H.-U.D.), Biocenter, Weinbergweg 22, D-06120 Halle (Saale), Germany

Abstract

The incretin glucose-dependent insulinotropic polypeptide (GIP) is a major regulator of postprandial insulin secretion in mammals. Recent studies in our laboratory, and others have suggested that GIP is a potent stimulus for protein kinase activation, including the MAPK (ERK1/2) module. Based on these studies, we hypothesized that GIP could regulate cell fate and sought to examine the underlying mechanisms involved in GIP stimulation of cell survival. GIP potentiated glucose-induced β-(INS-1)-cell growth to levels comparable with GH and GLP-1 while promoting cell survival in the face of serum and glucose-deprivation or treatment with wortmannin or streptozotocin. In the absence of GIP, 50% of cells died after 48 h of serum and glucose withdrawal, whereas 91 ± 10% of cells remained viable in the presence of GIP [n = 3, P < 0.05; EC50 of 1.24 ± 0.48 nm GIP (n = 4)]. Effects of GIP on cell survival and inhibition of caspase-3 were mimicked by forskolin, but pharmacological experiments excluded roles for MAPK kinase (Mek)1/2, phosphatidylinositol 3-kinase, protein kinase A, Epac, and Rap 1. Survival effects of GIP were ablated by the inhibitor SB202190, indicating a role for p38 MAPK. Furthermore, caspase-3 activity was also regulated by p38 MAPK, with a lesser role for Mek1/2, based on RNA interference studies. We propose that GIP is able to reverse caspase-3 activation via inhibition of long-term p38 MAPK phosphorylation in response to glucose deprivation (±wortmannin). Intriguingly, these findings contrasted with short-term phosphorylation of MKK3/6→p38 MAPK→ATF-2 by GIP. Thus, these data suggest that GIP is able to regulate INS-1 cell survival by dynamic control of p38 MAPK phosphorylation via cAMP signaling and lend further support to the notion that GIP regulation of MAPK signaling is critical for its regulation of cell fate.

Publisher

The Endocrine Society

Subject

Endocrinology

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3