Deciphering the gene regulatory network associated with anti-apoptosis in the pancreatic islets of type 2 diabetes mice using computational approaches

Author:

Ahmed Firoz

Abstract

<abstract> <p>Type 2 diabetes (T2D) is a major global health problem often caused by the inability of pancreatic islets to compensate for the high insulin demand due to apoptosis. However, the complex mechanisms underlying the activation of apoptosis and its counter process, anti-apoptosis, during T2D remain unclear. In this study, we employed bioinformatics and systems biology approaches to understand the anti-apoptosis-associated gene expression and the biological network in the pancreatic islets of T2D mice. First, gene expression data from four peripheral tissues (islets, liver, muscle and adipose) were used to identify differentially expressed genes (DEGs) in T2D compared to non-T2D mouse strains. Our comparative analysis revealed that <italic>Gm2036</italic> is upregulated across all four tissues in T2D and is functionally associated with increased cytosolic Ca<sup>2+</sup> levels, which may alter the signal transduction pathways controlling metabolic processes. Next, our study focused on islets and performed functional enrichment analysis, which revealed that upregulated genes are significantly associated with sucrose and fructose metabolic processes, as well as negative regulation of neuron apoptosis. Using the Ingenuity Pathway Analysis (IPA) tool of QIAGEN, gene regulatory networks and their biological effects were analyzed, which revealed that glucose is associated with the underlying change in gene expression in the islets of T2D; and an activated gene regulatory network—containing upregulated <italic>CCK, ATF3, JUNB, NR4A1, GAST</italic> and downregulated <italic>DPP4</italic>—is possibly inhibiting apoptosis of islets and β-cells in T2D. Our computational-based study has identified a putative regulatory network that may facilitate the survival of pancreatic islets in T2D; however, further validation in a larger sample size is needed. Our results provide valuable insights into the underlying mechanisms of T2D and may offer potential targets for developing more efficacious treatments.</p> </abstract>

Publisher

American Institute of Mathematical Sciences (AIMS)

Reference109 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3