Injectable microcarrier‐hydrogel composite for dental stem cell delivery and tissue regeneration

Author:

Soh Yu Jie1,Lin Ruby Yu‐Tong1,Sriram Gopu12ORCID,Toh Wei Seong13456,Yu Victoria Soo Hoon1,Dubey Nileshkumar12ORCID

Affiliation:

1. Faculty of Dentistry National University of Singapore Singapore Singapore

2. ORCHIDS: Oral Care Health Innovations and Designs Singapore National University of Singapore Singapore Singapore

3. Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore

4. Department of Biomedical Engineering, College of Design & Engineering National University of Singapore Singapore Singapore

5. Tissue Engineering Program, Life Sciences Institute National University of Singapore Singapore Singapore

6. Integrative Sciences and Engineering Program, NUS Graduate School National University of Singapore Singapore Singapore

Abstract

AbstractConventional methods of stem cell therapy for tissue regeneration often face challenges, such as poor cell viability and integration posttransplantation. To address this, we proposed transplanting cells within synthetic microenvironments that maintain viability, cell phenotype, support extracellular matrix (ECM) secretion, and promote differentiation to enhance the regeneration of damaged host tissue. This hypothesis was tested in dental tissue regeneration using dental pulp stem cell‐laden microcarriers (MCs) mixed in a gelatin methacrylate (GelMA) hydrogel as a delivery system. The combination of MCs and GelMA exhibited similar physical properties and favorable biological properties compared to GelMA alone. Specifically, cell‐laden MC mixed into GelMA enhanced cell proliferation and ECM secretion and maintained a normal phenotype. Notably, MC‐modified GelMA amplified odontogenic differentiation, mineralization, and vascular endothelial growth factor release. Moreover, the storage of MC‐modified GelMA showed no detrimental effects on its injection force, cell viability, and mineralization potential, which demonstrates that the composite hydrogel is a promising injectable vehicle for therapeutic stem cell delivery. This strategy may be broadly applied to various tissues and organ systems, in which the provision and instruction of a cell population to participate in regeneration may be clinically useful.

Publisher

Wiley

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3