Multifaceted Hydrogel Scaffolds: Bridging the Gap between Biomedical Needs and Environmental Sustainability

Author:

Mamidi Narsimha12ORCID,De Silva Fátima Franco2,Vacas Alejandro Bedón2,Gutiérrez Gómez Javier Adonay2,Montes Goo Naomi Yael2,Mendoza Daniela Ruiz2,Reis Rui L.34,Kundu Subhas C.34

Affiliation:

1. Wisconsin Center for NanoBioSystems School of Pharmacy University of Wisconsin‐Madison Madison WI 53705 USA

2. Department of Chemistry and Nanotechnology The School of Engineering and Science Tecnologico de Monterrey Nuevo Leon Monterrey 64849 Mexico

3. 3Bs Research Group I3Bs‐Research Institute on Biomaterials Biodegradables and Biomimetics Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine University of Minho Barco Guimarães 4805‐017 Portugal

4. ICVS/3B's–PT Government Associate Laboratory Braga Guimarães Portugal

Abstract

AbstractHydrogels are dynamically evolving 3D networks composed of hydrophilic polymer scaffolds with significant applications in the healthcare and environmental sectors. Notably, protein‐based hydrogels mimic the extracellular matrix, promoting cell adhesion. Further enhancing cell proliferation within these scaffolds are matrix‐metalloproteinase‐triggered amino acid motifs. Integration of cell‐friendly modules like peptides and proteins expands hydrogel functionality. These exceptional properties position hydrogels for diverse applications, including biomedicine, biosensors, environmental remediation, and the food industry. Despite significant progress, there is ongoing research to optimize hydrogels for biomedical and environmental applications further. Engineering novel hydrogels with favorable characteristics is crucial for regulating tissue architecture and facilitating ecological remediation. This review explores the synthesis, physicochemical properties, and biological implications of various hydrogel types and their extensive applications in biomedicine and environmental sectors. It elaborates on their potential applications, bridging the gap between advancements in the healthcare sector and solutions for environmental issues.

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3