Low Voltage High Polarization by Optimizing Scavenged WNx Interfacial Capping Layer at the Ru/HfxZr1‐xO2 Interface and Evidence of Fatigue Mechanism

Author:

Aich Abhijit1,Senapati Asim1,Lou Zhao‐Feng2ORCID,Chen Yi‐Pin34,Huang Shih‐Yin45,Maikap Siddheswar14ORCID,Lee Min‐Hung2,Liu Chee Wee6

Affiliation:

1. Thin Film Nano Tech. Lab. Department of Electronics Engineering Chang Gung University (CGU) 259 Wen‐Hwa 1st Rd., Guishan Tao‐Yuan 33302 Taiwan

2. Program for Semiconductor Devices Materials, and Hetero‐integration Graduate School of Advanced Technology National Taiwan University Taipei 106319 Taiwan

3. School of Traditional Chinese Medicine College of Medicine Chang Gung University (CGU) Taoyuan 33302 Taiwan

4. Department of Obstetrics and Gynecology Keelung Chang Gung Memorial Hospital (CGMH) No. 222, Maijin Rd., Anle Keelung 204 Taiwan

5. Chang Gung University College of Medicine Tao‐Yuan 33302 Taiwan

6. Department of Electrical Engineering Graduate Institute of Electronics Engineering Graduate Institute of Photonics and Optoelectronics and Graduate School of Advanced Technology National Taiwan University (NTU) Taipei 10617 Taiwan

Abstract

AbstractIn this study, the double remnant polarization (2Pr) is enhanced from ≈2 to 25 µC cm−2 at a low applied voltage of ±2 V (or from 10 to 35 µC cm−2 at a voltage of ±4 V) by decreasing the WNx interfacial capping layer (ICL) thickness from 6 to 2 nm in a novel Ru/WNx ICL/Hf0.5Zr0.5O2(HZO)/TiN structure after annealing at 400 °C in a furnace. This occurs because of the higher orthorhombic (o) plus rhombohedral (r) phases (>70%), which is analyzed by geometrical phase analysis (GPA) of high‐resolution transmission electron microscope (HRTEM) images. An optimized 2 nm WNx ICL memory capacitor shows a low coercive field (Ec) of 1.27 MV cm−1 and long endurance of > 109 cycles (remaining 2Pr value of 13.5 µC cm−2) under a low field stress of ±2 MV cm−1 and 0.1 µs hold pulse width (or ≈1.67 MHz). Even this long endurance of > 109 cycles is obtained by applying a higher stress of ±2 MV cm−1, 1 MHz, or 100 kHz. Under ±3 MV cm−1 stress, the mechanism is caused by m‐phase growth from both the HZO/TiN bottom electrode (BE) and WNx ICL/HZO interfaces, which is evidenced by HRTEM images after 2 × 107 cycles for the first time.

Funder

National Science and Technology Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3